#include <gp.h>
List of all members.
Public Member Functions |
| GP (int d, int n=0) |
virtual | ~GP () |
virtual void | Sample () |
bool | Add (const Eigen::VectorXd &x, double f) |
void | Train () |
void | Train (const Eigen::MatrixXd &Xs, const Eigen::VectorXd &fs) |
double | Predict (const Eigen::VectorXd &x, double *s=0) const |
double | SqExp (const Eigen::VectorXd &xa, const Eigen::VectorXd &xb) const |
double | LogL (double dll[2]=0) |
double | PI (const Eigen::VectorXd &x, double fmin) const |
double | OptParams () |
Public Attributes |
int | d |
| dimension
|
int | n |
| number of data points
|
Eigen::MatrixXd | Xs |
| data points
|
Eigen::VectorXd | fs |
| values
|
Eigen::MatrixXd | K |
Eigen::MatrixXd | Ki |
Eigen::MatrixXd | L |
Eigen::VectorXd | a |
double | l |
double | s |
double | sigma |
bool | cf |
| propagate cholesky factor L rather than K^{-1}
|
bool | eps |
| prohibit adding points that are eps-close in L_2 to existing data
|
Constructor & Destructor Documentation
Initialize a GP with dimension d and number of points n
- Parameters:
-
d | dimension |
n | number of points (optional) |
Member Function Documentation
bool GP::Add |
( |
const Eigen::VectorXd & |
x, |
|
|
double |
f |
|
) |
| |
Add a new data point
- Parameters:
-
x | data vector |
f | value |
true | if OK |
References a, cf, d, eps, fs, K, Ki, L, l, n, sigma, SqExp(), and Xs.
Loglikelihood
- Parameters:
-
dll | derivative of log-liklihood w.r. to l and s |
- Returns:
- log-likelihood
References a, d, L, l, n, and s.
Referenced by OptParams().
Optimize GP parameters. This is currently done naively using a grid enumeration over l and s
References l, LogL(), and Train().
double GP::PI |
( |
const Eigen::VectorXd & |
x, |
|
|
double |
fmin |
|
) |
| const |
Probability of improvement over a given value fmin x data vector
- Parameters:
-
- Returns:
- probability of improvement
References gcop::ncdf(), Predict(), and s.
double GP::Predict |
( |
const Eigen::VectorXd & |
x, |
|
|
double * |
s = 0 |
|
) |
| const |
Predict value at point x
- Parameters:
-
x | point |
s | pointer to predicted covariance (optional) |
- Returns:
- predicted mean
References a, cf, Ki, L, sigma, and SqExp().
Referenced by PI().
Generate random points
References fs, and Xs.
double GP::SqExp |
( |
const Eigen::VectorXd & |
xa, |
|
|
const Eigen::VectorXd & |
xb |
|
) |
| const |
Square exponential kernel
- Parameters:
-
xa | first point |
xb | second point |
- Returns:
- correlation
References d, l, and s.
Referenced by Add(), Predict(), and Train().
void gcop::GP::Train |
( |
const Eigen::MatrixXd & |
Xs, |
|
|
const Eigen::VectorXd & |
fs |
|
) |
| |
Train GP using a given dataset (xs, fs)
- Parameters:
-
d-n | matrix of data vectors |
n-vector | of values |
Member Data Documentation
prohibit adding points that are eps-close in L_2 to existing data
Referenced by Add().
The documentation for this class was generated from the following files: