#include <gp.h>
List of all members.
Public Member Functions | 
|   | GP (int d, int n=0) | 
| virtual  | ~GP () | 
| virtual void  | Sample () | 
| bool  | Add (const Eigen::VectorXd &x, double f) | 
| void  | Train () | 
| void  | Train (const Eigen::MatrixXd &Xs, const Eigen::VectorXd &fs) | 
| double  | Predict (const Eigen::VectorXd &x, double *s=0) const  | 
| double  | SqExp (const Eigen::VectorXd &xa, const Eigen::VectorXd &xb) const  | 
| double  | LogL (double dll[2]=0) | 
| double  | PI (const Eigen::VectorXd &x, double fmin) const  | 
| double  | OptParams () | 
Public Attributes | 
| int  | d | 
|   | dimension  
  | 
| int  | n | 
|   | number of data points  
  | 
| Eigen::MatrixXd  | Xs | 
|   | data points  
  | 
| Eigen::VectorXd  | fs | 
|   | values  
  | 
| Eigen::MatrixXd  | K | 
| Eigen::MatrixXd  | Ki | 
| Eigen::MatrixXd  | L | 
| Eigen::VectorXd  | a | 
| double  | l | 
| double  | s | 
| double  | sigma | 
| bool  | cf | 
|   | propagate cholesky factor L rather than K^{-1}  
  | 
| bool  | eps | 
|   | prohibit adding points that are eps-close in L_2 to existing data  
  | 
Constructor & Destructor Documentation
Initialize a GP with dimension d and number of points n 
- Parameters:
 - 
  
    | d | dimension  | 
    | n | number of points (optional)  | 
  
   
 
 
Member Function Documentation
      
        
          | bool GP::Add  | 
          ( | 
          const Eigen::VectorXd &  | 
          x,  | 
        
        
           | 
           | 
          double  | 
          f  | 
        
        
           | 
          ) | 
           |  | 
        
      
 
Add a new data point 
- Parameters:
 - 
  
    | x | data vector  | 
    | f | value  | 
    | true | if OK  | 
  
   
References a, cf, d, eps, fs, K, Ki, L, l, n, sigma, SqExp(), and Xs.
 
 
Loglikelihood 
- Parameters:
 - 
  
    | dll | derivative of log-liklihood w.r. to l and s  | 
  
   
- Returns:
 - log-likelihood 
 
References a, d, L, l, n, and s.
Referenced by OptParams().
 
 
Optimize GP parameters. This is currently done naively using a grid enumeration over l and s 
References l, LogL(), and Train().
 
 
      
        
          | double GP::PI  | 
          ( | 
          const Eigen::VectorXd &  | 
          x,  | 
        
        
           | 
           | 
          double  | 
          fmin  | 
        
        
           | 
          ) | 
           |  const | 
        
      
 
Probability of improvement over a given value fmin  x data vector 
- Parameters:
 - 
  
  
 
- Returns:
 - probability of improvement 
 
References gcop::ncdf(), Predict(), and s.
 
 
      
        
          | double GP::Predict  | 
          ( | 
          const Eigen::VectorXd &  | 
          x,  | 
        
        
           | 
           | 
          double *  | 
          s = 0  | 
        
        
           | 
          ) | 
           |  const | 
        
      
 
Predict value at point x 
- Parameters:
 - 
  
    | x | point  | 
    | s | pointer to predicted covariance (optional)  | 
  
   
- Returns:
 - predicted mean 
 
References a, cf, Ki, L, sigma, and SqExp().
Referenced by PI().
 
 
Generate random points 
References fs, and Xs.
 
 
      
        
          | double GP::SqExp  | 
          ( | 
          const Eigen::VectorXd &  | 
          xa,  | 
        
        
           | 
           | 
          const Eigen::VectorXd &  | 
          xb  | 
        
        
           | 
          ) | 
           |  const | 
        
      
 
Square exponential kernel 
- Parameters:
 - 
  
    | xa | first point  | 
    | xb | second point  | 
  
   
- Returns:
 - correlation 
 
References d, l, and s.
Referenced by Add(), Predict(), and Train().
 
 
      
        
          | void gcop::GP::Train  | 
          ( | 
          const Eigen::MatrixXd &  | 
          Xs,  | 
        
        
           | 
           | 
          const Eigen::VectorXd &  | 
          fs  | 
        
        
           | 
          ) | 
           |  | 
        
      
 
Train GP using a given dataset (xs, fs) 
- Parameters:
 - 
  
    | d-n | matrix of data vectors  | 
    | n-vector | of values  | 
  
   
 
 
Member Data Documentation
prohibit adding points that are eps-close in L_2 to existing data 
Referenced by Add().
 
 
The documentation for this class was generated from the following files: