|
GCOP
1.0
|
#include <kalmanpredictor.h>


Public Types | |
| typedef Matrix< double, _nx, 1 > | Vectornd |
| typedef Matrix< double, _nu, 1 > | Vectorcd |
| typedef Matrix< double, _np, 1 > | Vectormd |
| typedef Matrix< double, _nx, _nx > | Matrixnd |
| typedef Matrix< double, _nx, _nu > | Matrixncd |
| typedef Matrix< double, _nu, _nx > | Matrixcnd |
| typedef Matrix< double, _nu, _nu > | Matrixcd |
| typedef Matrix< double, _np, _np > | Matrixmd |
| typedef Matrix< double, _nx, _np > | Matrixnmd |
| typedef Matrix< double, _np, _nx > | Matrixmnd |
Public Member Functions | |
| KalmanPredictor (System< T, _nx, _nu, _np > &sys) | |
| virtual | ~KalmanPredictor () |
| virtual bool | Predict (T &xb, double t, const T &xa, const Vectorcd &u, double h, const Vectormd *p=0, bool cov=true) |
Public Attributes | |
| Matrixnd | A |
| process Jacobian | |
| Matrixnd | Q |
| discrete-time process noise covariance | |
| typedef Matrix<double, _nu, _nu> gcop::KalmanPredictor< T, _nx, _nu, _np >::Matrixcd |
Reimplemented from gcop::Predictor< T, _nx, _nu, _np >.
| typedef Matrix<double, _nu, _nx> gcop::KalmanPredictor< T, _nx, _nu, _np >::Matrixcnd |
Reimplemented from gcop::Predictor< T, _nx, _nu, _np >.
| typedef Matrix<double, _np, _np> gcop::KalmanPredictor< T, _nx, _nu, _np >::Matrixmd |
Reimplemented from gcop::Predictor< T, _nx, _nu, _np >.
| typedef Matrix<double, _np, _nx> gcop::KalmanPredictor< T, _nx, _nu, _np >::Matrixmnd |
Reimplemented from gcop::Predictor< T, _nx, _nu, _np >.
| typedef Matrix<double, _nx, _nu> gcop::KalmanPredictor< T, _nx, _nu, _np >::Matrixncd |
Reimplemented from gcop::Predictor< T, _nx, _nu, _np >.
| typedef Matrix<double, _nx, _nx> gcop::KalmanPredictor< T, _nx, _nu, _np >::Matrixnd |
Reimplemented from gcop::Predictor< T, _nx, _nu, _np >.
| typedef Matrix<double, _nx, _np> gcop::KalmanPredictor< T, _nx, _nu, _np >::Matrixnmd |
Reimplemented from gcop::Predictor< T, _nx, _nu, _np >.
| typedef Matrix<double, _nu, 1> gcop::KalmanPredictor< T, _nx, _nu, _np >::Vectorcd |
Reimplemented from gcop::Predictor< T, _nx, _nu, _np >.
| typedef Matrix<double, _np, 1> gcop::KalmanPredictor< T, _nx, _nu, _np >::Vectormd |
Reimplemented from gcop::Predictor< T, _nx, _nu, _np >.
| typedef Matrix<double, _nx, 1> gcop::KalmanPredictor< T, _nx, _nu, _np >::Vectornd |
Reimplemented from gcop::Predictor< T, _nx, _nu, _np >.
| gcop::KalmanPredictor< T, _nx, _nu, _np >::KalmanPredictor | ( | System< T, _nx, _nu, _np > & | sys | ) |
| gcop::KalmanPredictor< T, _nx, _nu, _np >::~KalmanPredictor | ( | ) | [virtual] |
| bool gcop::KalmanPredictor< T, _nx, _nu, _np >::Predict | ( | T & | xb, |
| double | t, | ||
| const T & | xa, | ||
| const Vectorcd & | u, | ||
| double | h, | ||
| const Vectormd * | p = 0, |
||
| bool | cov = true |
||
| ) | [virtual] |
Prediction step.
| xb | new belief state |
| t | time |
| xa | previous belief state |
| u | control inputs |
| h | time-step |
| p | parameters (optional) |
| cov | whether to update the covariance as well (true by default) |
Implements gcop::Predictor< T, _nx, _nu, _np >.
| Matrixnd gcop::KalmanPredictor< T, _nx, _nu, _np >::A |
process Jacobian
Referenced by gcop::KalmanPredictor< T, _nx, _nu, _np >::KalmanPredictor().
| Matrixnd gcop::KalmanPredictor< T, _nx, _nu, _np >::Q |
discrete-time process noise covariance
Referenced by gcop::KalmanPredictor< T, _nx, _nu, _np >::KalmanPredictor().
1.7.6.1