|
GCOP
1.0
|
#include <normal.h>
Public Types | |
| typedef Matrix< double, _n, 1 > | Vectornd |
| typedef Matrix< double, _n, _n > | Matrixnd |
Public Member Functions | |
| Normal (int n=1) | |
| Normal (const Vectornd &mu, const Matrixnd &P) | |
| virtual | ~Normal () |
| double | L (const Vectornd &x) const |
| double | Sample (Vectornd &x) |
| bool | Update () |
| void | Fit (const vector< pair< Vectornd, double > > xps, double a=1) |
Public Attributes | |
| Vectornd | mu |
| mean | |
| Matrixnd | P |
| covariance | |
| double | det |
| determinant | |
| Matrixnd | Pinv |
| covariance inverse | |
| bool | pd |
| covariance is positive-definite | |
| Matrixnd | A |
| cholesky factor | |
| Vectornd | rn |
| normal random vector | |
| double | norm |
| normalizer | |
| int | bd |
| force a block-diagonal structure with block dimension bd (0 by default means do not enforce) | |
| bool | bounded |
| whether to enforce a box support (false by default) | |
| Vectornd | lb |
| lower bound | |
| Vectornd | ub |
| upper bound | |
| LLT< Matrixnd > | llt |
| LLT object to Cholesky. | |
| typedef Matrix<double, _n, _n> gcop::Normal< _n >::Matrixnd |
| typedef Matrix<double, _n, 1> gcop::Normal< _n >::Vectornd |
| gcop::Normal< _n >::Normal | ( | int | n = 1 | ) |
n-dimensional normal distribution
| n | dimension |
References gcop::Normal< _n >::A, gcop::Normal< _n >::lb, gcop::Normal< _n >::mu, gcop::Normal< _n >::P, gcop::Normal< _n >::Pinv, gcop::Normal< _n >::rn, and gcop::Normal< _n >::ub.
| gcop::Normal< _n >::Normal | ( | const Vectornd & | mu, |
| const Matrixnd & | P | ||
| ) |
n-dimensional normal distribution with mean mu and covariance P
| mu | mean |
| P | covariance |
References gcop::Normal< _n >::A, gcop::Normal< _n >::lb, gcop::Normal< _n >::Pinv, gcop::Normal< _n >::rn, gcop::Normal< _n >::ub, and gcop::Normal< _n >::Update().
| gcop::Normal< _n >::~Normal | ( | ) | [virtual] |
| void gcop::Normal< _n >::Fit | ( | const vector< pair< Vectornd, double > > | xps, |
| double | a = 1 |
||
| ) |
Estimate the distribution using data xs and costs cs (optional)
| xps | data points and corresponding probabilities (should sum up to 1) |
| a | smoothing parameter [ mu_new = a*mu + (1-a)*mu_old ], equation to 1 by default |
| double gcop::Normal< _n >::L | ( | const Vectornd & | x | ) | const |
Compute likelihood of element x
| x | n-dimensional vector |
Referenced by gcop::Normal2dView< _n >::Render().
| double gcop::Normal< _n >::Sample | ( | Vectornd & | x | ) |
Sample from the distribution
| x | n-dimensional vector to be sampled |
References gcop::random_normal().
| bool gcop::Normal< _n >::Update | ( | ) |
Updates the Cholesky factor and the normalization constant
Referenced by gcop::Normal< _n >::Normal().
| Matrixnd gcop::Normal< _n >::A |
cholesky factor
Referenced by gcop::Normal< _n >::Normal().
| int gcop::Normal< _n >::bd |
force a block-diagonal structure with block dimension bd (0 by default means do not enforce)
| bool gcop::Normal< _n >::bounded |
whether to enforce a box support (false by default)
| double gcop::Normal< _n >::det |
determinant
| Vectornd gcop::Normal< _n >::lb |
lower bound
Referenced by gcop::Normal< _n >::Normal().
| LLT<Matrixnd> gcop::Normal< _n >::llt |
LLT object to Cholesky.
| Vectornd gcop::Normal< _n >::mu |
mean
Referenced by gcop::Normal< _n >::Normal(), and gcop::Normal2dView< _n >::Render().
| double gcop::Normal< _n >::norm |
normalizer
| Matrixnd gcop::Normal< _n >::P |
covariance
Referenced by gcop::Normal< _n >::Normal(), and gcop::Normal2dView< _n >::Render().
| bool gcop::Normal< _n >::pd |
covariance is positive-definite
| Matrixnd gcop::Normal< _n >::Pinv |
covariance inverse
Referenced by gcop::Normal< _n >::Normal().
| Vectornd gcop::Normal< _n >::rn |
normal random vector
Referenced by gcop::Normal< _n >::Normal().
| Vectornd gcop::Normal< _n >::ub |
upper bound
Referenced by gcop::Normal< _n >::Normal().
1.7.6.1